

LA-UR-20-21659

Approved for public release; distribution is unlimited.

Title: Selective hydrothermal extraction of lanthanides: mimicking natural

ore-forming processes

Author(s): Migdissov, Artaches

Strzelecki, Andrew Charles

Boukhalfa, Hakim

Sauer, Kirsten Benedict Nisbet, Haylea Dawn Velizhanin, Kirill A. Currier, Robert Patrick

Intended for: Report

Issued: 2020-02-20

Selective hydrothermal extraction of lanthanides: mimicking natural ore-forming processes

A. Migdisov; A.C. Strzelecki; H. Boukhalfa; K. Sauer; H. Nisbet; K. Velizhanin; R. P. Currier

20190057DR Progress Appraisal

February 24, 2020

Why Lanthanides? – Rare Earth Crisis

hybrid vehicles, rechargeable batteries, wind turbines, cell phones, flat screen display panels, compact fluorescent light bulbs, laptop computers, disk drives, catalytic converters

China: controls 97% of the global REE market

REE consumption in US: 20,000 metric ton in 2018

2014: USGS Mineral Resources report "The Rare-Earth Elements - Vital to Modern Technologies and Lifestyles"

2013: DOE "Critical materials institute" hub was created based on the Ames Lab (EERE, AM)

Medium Term (S-15 years)

A (high)

Supply risk

2011: DOE "Critical materials strategy" report released

2006: China enforced quotas for the export of REE; 2,000-5,000% increase of prices for REE

2015: China lost its case at WTO; Quotas are removed; Prices returned back to pre-2006 level; US companies are broke; production of REE stopped

Sources of the current crisis (second wave)

1. Low labor and production cost in China:

Time	LIGHT RARE EARTH METALS	Last Price	Units
09 May 2018	Lanthanum metal ≥ 99%	6.00	US\$/kg
09 May 2018	Cerium metal ≥ 99%	6.10	US\$/kg
09 May 2018	Praseodymium metal ≥ 99%	128.00	US\$/kg
09 May 2018	Neodymium metal ≥ 99.5%	70.00	US\$/kg
09 May 2018	Samarium metal ≥ 99.9%	15.50	US\$/kg
Time	HEAVY RARE EARTH METALS	Last Price	Units
09 May 2018	Gadolinium metal 99.9%	46.00	US\$/kg
09 May 2018	Terbium metal ≥ 99.9%	665.00	US\$/kg
09 May 2018	Dysprosium metal ≥ 99%	278.00	US\$/kg
09 May 2018	Erbium metal ≥ 99.9%	111.85	US\$/kg
09 May 2018	Yttrium metal ≥ 99.9%	37.50	US\$/kg
09 May 2018	Scandium metal 99.9%	3,617.00	US\$/kg
09 May 2018	Mischmetal ≥ 99%	6.00	US\$/kg

REE concentrate value

(after primary extraction from feed stock):

Hydrochloric Acid, Technical:

Sulfuric Acid, Technical:

5 to 15 \$/kg	\$/kg	5 \$/	to 1	5
---------------	-------	-------	------	---

\$77.00 / 2.5 I

\$92.04/ 2.5 I

2. Environmental regulations in US:

Conventional extraction and purification of REE:

Extensive use of organic solvents, strong acids and bases

RFF oxide

Bastnaesite

U and Th closely accompany Ln in nature, are co-extracted and concentrated by conventional technologies: need to invest in remediation of rad waste

Technical Goals

Focus: co-production of REE (Lanthanides + Y + Sc) combined with desalinization

Aim for new technology:

- Avoid investing in extraction of cheap LREE, extract M/HREE only → increase the value of the intermediate/final product
- Exclude extraction and concentration of U and Th → avoid investment in rad remediation
- 3. Maximize **environmental friendliness** of the technology

Hints from the nature

Nature does not use expensive reagents or strong acids to extract and concentrate REE to ore bodies— not much more than hot water and abundant ligands!

Known natural depositional (concentration) mechanisms:

Extremely low solubility of REE phosphates and fluorides. Just traces of F or PO₄ lead to REE precipitation

Solubilities are so low that REE precipitation is preferential against other elements (selective)

Solubilities are retrograde (decrease with increasing temperature): most efficient at higher T

Migdisov et al. Chem. Geol. 439, 13-42 (2016).

Hints from the nature

LREE, M/HREE, U, and Th are known to fractionate in ore forming systems:

Due to different stability of aqueous species (at high T)

Due to different solubility of solid end members

Extremely rare, but documented case deposits highly enriched with M/HREE: Lodfal, Namibia; Brown Range, Australia

Migdisov et al., Hydrothermal transport, deposition, and fractionation of the REE: Experimental data and thermodynamic calculations. *Chem. Geol.* **439**, 13–42 (2016).

Migdisov et al., Fractionation of REE, U, and Th in natural ore-forming hydrothermal systems: Thermodynamic modeling. The Journal of Chemical Thermodynamics 128, 305-319 (2019)

Nisbet, H. et al. Challenging the Th immobility paradigm—Scientific reports 9 (1), 1-6 (2019)

Method

Figure 2. Design of the proof-of-concept experiments mimicking extraction and separation mechanisms illustrated in Figure 1.

Post-experiment treatment

XRD; SEM (mineral composition)

XRF (chemical composition)

Oven

Apatite $(Ca_5(PO_4)_3OH)$ – filled columns

Apatite (Ca₅(PO₄)₃OH) – filled columns

Apatite (Ca₅(PO₄)₃OH) – filled columns

Apatite (Ca₅(PO₄)₃OH) – filled columns

Fluorite (CaF₂) - filled columns

Fluorite (CaF₂) - filled columns

Fluorite (CaF₂) - filled columns

Other elements beside La, Nd, and Er

Other elements (U,Th)

Table 2. Detailed elemental composition of apatite used as column fill material.

Element I.D.	% or PPM	
Na ₂ O %	0.222	
MgO %	0.07	
Al_2O_3 %	0.196	
SiO ₂ %	9.1	
$P_2O_5\%$	33.8	
CaO %	54.7	
V ppm	20	
Cr ppm	179	
NiO	0.004	
Ni ppm	30	
Cu ppm	15	
Sr ppm	631	
Y ppm	449	
Zr ppm	150	
Pb ppm	53	
La ppm	2404.5	
Ce ppm	5120.6	
Pr ppm	452.0	
Sm ppm	119.0	
Gd ppm	138.7	
Nd ppm	1594.7	
Er ppm	82.201	
Th ppm	2144.3	
U ppm	71.2	
LOI %	0.18	
Total %	100.2	

Other elements (Sc)

» Extraction of REE elements from an acid mine drainage sample from a coal mining plant

Bethel AMD Pump Solution, pH 2, 250°C

Conclusion

- 1. Hydrothermal-based technology (with fluorite) extracts from aqueous feedstock M/HREE selectively
- 2. Hydrothermal approach permits to avoid extracting and concentrating U and Th
- 3. The technology is patented (U.S. provisional patent application No. 62/859,428)
- 4. Manuscript: Nature Geoscience, under review

Path forward

- REE always occur as a group of elements not as a single representative of the Ln group → they never form pure solid end members, but always solid solutions
 - ✓ Properties of REE solid solutions are extremely poorly known
 - ✓ This knowledge is required to tune up the extraction technology based on precipitation of solids or solid/solutions
 - ✓ Re: See the poster of Nisbet

Path forward

- 2. Sc an outlaw in the REE group,... though a very attractive outlaw
 - ✓ Properties of Sc are effectively unmapped in aqueous, gas, and solid phases

Time	LIGHT RARE EARTH METALS	Last Price	Units
09 May 2018	Lanthanum metal ≥ 99%	6.00	US\$/kg
09 May 2018	Cerium metal ≥ 99%	6.10	US\$/kg
09 May 2018	Praseodymium metal ≥ 99%	128.00	US\$/kg
09 May 2018	Neodymium metal ≥ 99.5%	70.00	US\$/kg
09 May 2018	Samarium metal ≥ 99.9%	15.50	US\$/kg
Time	HEAVY RARE EARTH METALS	Last Price	Units
09 May 2018	Gadolinium metal 99.9%	46.00	US\$/kg
09 May 2018	Terbium metal ≥ 99.9%	665.00	US\$/kg
09 May 2018	Dysprosium metal ≥ 99%	278.00	US\$/kg
09 May 2018	Erbium metal ≥ 99.9%	111.85	US\$/kg
09 May 2018	Yttrium metal ≥ 99.9%	37.50	US\$/kg
09 May 2018	Scandium metal 99.9%	3,617.00	US\$/kg
09 May 2018	Mischmetal ≥ 99%	6.00	US\$/kg

- ✓ Understanding of the behavior of this element is required for its efficient extraction
- ✓ Re: See the poster of Alcorn

